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Abstract. In ophthalmologic studies, measurements obtained from both eyes

of an individual are often highly correlated. Ignoring the correlation could lead

to incorrect inferences. An asymptotic method was proposed by Tang et al.

(2008) for testing equality of proportions between two groups. In this article,

we investigate three testing procedures for general g ≥ 2 groups. Our simu-

lation results show the score testing procedure usually produces satisfactory

type I error control and having more power. Examples from ophthalmologic

studies are used to illustrate our proposed methods.

1. Introduction

In randomized clinical trials [1], patients are usually randomized into two or

more treatment groups, and patients within each group receive the same treatment.

Often a control group or a group with standard treatment is included for testing

the efficiency of new treatments. After the randomization, all patients are followed

up in exactly the same way as designed, and the only difference is the treatment

assigned for each group. A randomized clinical trial is a good choice to eliminate

many of the biases and to avoid ethical problems that may arise for comparing

treatments [2, 3]. For example, in a double-blinded two-arm clinical trial for an

ophthalmologic study, all patients are randomized into two treatment groups and

the same treatment is applied to two eyes of patients from the same group. Such

clustered data with cluster size two often arise from many statistical and medical

applications, such as ophthalmologic studies, orthopaedic studies, otolaryngological

studies and twin studies.

We wish to test if the outcomes are identical among the two or more treatment

groups. Obviously, the information contributed from two eyes of a single person
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tends to be highly correlated. Any statistical method such as t tests, analyses

of variance, chi-square tests, that ignores the feature of dependence could lead to

incorrect inferences (see, [4], [5], [6], [7], [8]).

In this article, we consider the case of a dichotomous outcome, such as the pres-

ence of a disease or some other binary trait. Several statistical tests have been

proposed. Rosner [4] proposed a parametric model and a test statistic for testing

homogeneity of proportions among g groups, however, the maximum likelihood es-

timates (MLEs) and likelihood-based tests were not given. Tang et al. (2006, 2008)

considered this problem for two groups only and proposed several asymptotic test-

ing procedures, including score test. It is difficult to extend the testing procedures

from 2 groups to g groups (g > 2) due to the complexity of deriving the infor-

mation matrix and maximum likelihood estimates which can be obtained only by

numerical iterations. The score test statistic has been shown to be advantageous to

other testing procedures in the comparison between two treatment groups in terms

of type I error control and power [10]. We expect the score test investigated for

comparing multiple treatment groups in this article to perform well as compared

to other procedures.

In this article, we present the methods for comparing proportions among any g

groups, g ≥ 2. The maximum likelihood estimate under Rosner’s model and three

different methods (Likelihood Ratio test, Wald-type test, Score test) are derived

and investigated in Section 2. In Section 3, Monte Carlo simulation studies are con-

ducted to compare the performance of various tests and comparisons are evaluated

with respect to actual type I error rates and powers. Examples from otolaryngolog-

ical studies are illustrated to demonstrate our methodologies in Section 4. Finally,

we give some concluding remarks in Section 5.

2. Methods

Suppose we wish to compare g groups of individuals from an ophthalmologic

study with mi individuals in the ith group, i = 1, . . . , g; N =
∑

mi total subjects

(Table 1). Let Zijk = 1 if the kth eye of jth individual in the ith group has a

response at the end of the study, and 0 otherwise, i = 1, . . . , g, j = 0, . . . ,mi, k =

1, 2. Let mji denote the number of subjects who has exactly j responses in the ith

group, and Sj be the number of subjects who has exactly j responses (e.g., affected

I would rephrase, "The score test 
statistic has demonstrated better 
type I error control and power 
than other testing procedures, 
when comparing two treatment 
groups."
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Table 1. Frequencies of the number of affected eyes for persons

in g groups

group

number of affected eyes 1 2 · · · g total

0 m01 m02 · · · m0g S0

1 m11 m12 · · · m1g S1

2 m21 m22 · · · m2g S2

total m1 m2 · · · mg N

eyes)

Sj =

g∑

i=1

mji, j = 0, 1, 2.

A parametric model proposed by Rosner [4] is given as

(2.1) Pr(Zijk = 1) = πi, P r(Zijk = 1|Zij,3−k = 1) = Rπi,

i = 1, . . . , g, j = 0, . . . ,mi, k = 1, 2 for some positive R. The constant R is a

measure of dependence between two eyes of the same person. If R = 1, then the

two eyes from the same patient are completely independent, while if Rπi = 1, then

the eyes of each patient in the i-th group are completely dependent. From the

conditional probability in Equation (2.1), it is easy to show that the correlation

between two eyes is

ρi = corr(Zij1, Zij2) =
πi

1− πi
(R− 1), i = 1, . . . , g.

We wish to test whether the response rates of the g groups are identical. The

hypotheses are given as

H0 : π1 = · · · = πg = π

against

H1 : some of the πi are unequal.
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Based on the observed data M̃ = (m01, · · · ,m0g,m11, · · · ,m1g,m21, · · · ,m2g),

the corresponding log-likelihood can be expressed as

l(π1, . . . ,πg;R) =

g∑

i=1

[
m0i log

(
R πi

2 − 2πi + 1
)
+m1i log (2πi(1−Rπi)) +m2i log

(
R π2

i

)]
.

Differentiating l(π1, . . . ,πg;R) with respect to parameters π1, . . . ,πg and R yields

(2.2)
∂l

∂πi
=

2m2i

πi
+

(2R πi − 2) m0i

R πi
2 − 2πi + 1

+
(4R πi − 2) m1i

2πi (R πi − 1)
, i = 1, . . . , g

(2.3)
∂l

∂R
=

g∑

i=1

(
m2i

R
+

πi
2 m0i

R πi
2 − 2πi + 1

+
πi m1i

R πi − 1

)

Under the null hypothesis H0 : π1 = · · · = πg = π, the maximum likelihood

estimates of π and R satisfy

∂l

∂R
= 0 and

∂l

∂π
=

2S2

π
+

(2R π − 2) S0

R π2 − 2π + 1
+

(4R π − 2) S1

2π (R π − 1)
= 0,

A direct algebra calculation results in the MLEs of π′
is and R

π̂H0 =
S1 + 2S2

2N

and

R̂H0
=

4NS2

(S1 + 2S2)2
.

Denote π̂i, i = 1, . . . , g and R as the maximum likelihood estimate of πi, i =

1, . . . , g and R, respectively. π̂i, i = 1, . . . , g and R are the solution of the following

equations
∂l

∂πi
= 0, i = 1, . . . , g,

∂l

∂R
= 0.

There is no closed form solution and it has to be solved iteratively. We can simplify

the formula in Equation (2.2) as the following 3rd order polynomial (for i = 1, . . . , g)

π3
i −

4m0i + 5m1i + 6m2i

2Rmi
π2
i +

m0i + (1 +R)m1i + (2 +R)m2i

R2mi
πi−

m1i + 2m2i

2R2mi
= 0

The (t + 1)th update for πi can directly be obtained by the real root of above

equation, and R can be updated by Fisher scoring method

R(t+1) = R(t) −
(

∂2l

∂R2
(π

(t)
1 , . . . ,π(t)

g ;R(t))

)−1
∂l

∂R
(π

(t)
1 , . . . ,π(t)

g ;R(t)).

See Appendix for the formula of ∂2l
∂R2 .
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2.1. Likelihood ratio test (TLR). The likelihood ratio (LR) test is given by

TLR = 2[l(π̂1, . . . , π̂g; R̂)− l(π̂H0 , . . . , π̂H0 ; R̂H0)].

Under the null hypothesis, TLR is asymptotically distributed as a chi-square distri-

bution with g − 1 degree of freedom.

2.2. Wald-type test (TW ). The null hypothesis H0 : π1 = · · · = πg can be

alternatively expressed as CβT = 0 where β = (π1, · · · ,πg, R) and

C =





1 −1 0

1 −1 0

. . .
. . .

...

1 −1 0




.

Wald-type test statistic (TW ) for testing H0 can be expressed as

TW = (βCT )(CI−1CT )−1(CβT )|β = (π̂1, . . . , π̂g, R̂),

where I is Fisher information matrix for β (See Appendix) and TW is asymptotically

distributed as a chi-square distribution with g − 1 degree of freedom. TW can be

simplified as

TW =

∑g
i,j=1 π̂iπ̂jDij∑g

k=1(b
2
k − h ∗ ak)

,

where

Dij =






(b2i − hai)
∑

k #=i ak + ai(
∑

k #=i bi)
2, if i = j,

biaj
∑

k #=j bk + bjai
∑

k #=i bk − haiaj − bibj
∑

k #=i,j ak, if i $= j,

ak =
−2mk(2R̂

2π̂2
k − R̂π̂2

k − 2R̂π̂k + 1)

π̂k(R̂2π̂3
k − 3R̂π̂2

k + R̂π̂k + 2π̂k − 1)
,

bk =
2mk(1− R̂)π̂2

k

R̂2π̂3
k − 3R̂π̂2

k + R̂π̂k + 2π̂k − 1
,

h =

g∑

i=1

mi

[
π̂4
i

1− 2π̂i + R̂π̂2
i

+
π̂2
i

R̂
+

2π̂3
i

1− R̂π̂i

]
.

Other multivariate tests of π’s can be done similarly by choosing corresponding C

matrix in above statistic. Further, Wald-type test statistic for testing H0a : πi = πj

vs H1a : πi $= πj , i $= j can be given by

TWa(i, j) = (βcT )(cI−1cT )−1(cβT )|β = (π̂1, . . . , π̂g, R̂),
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where c = (0, . . . , 1, . . . ,−1, . . . , 0) with 1 in ith element and −1 in jth element.

TWa is asymptotically distributed as a chi-square distribution with 1 degree of

freedom. TWa(i, j) can be simplified as

TWa(i, j) =
aiaj(

∑g
k=1(b

2
k/ak)− h)(π̂i − π̂j)

2)

(ai + aj)(
∑g

k #=i,j(b
2
k/ak)− h) + (bi + bj)2

.

2.3. Score test (TSC). The score test statistic TSC is given by

T 2
SC = UI(π, R)−1UT |π1 = · · · = πg = π̂H0 , R = R̂H0

where

U =

(
∂l

∂π1
, . . . ,

∂l

∂πg
, 0

)

and see Appendix for the formula of the inverse of the information matrix I(π, R)−1.

It can be simplified as

(2.4) T 2
SC =

g∑

k=1

N
(
S2
1m0k − S0S1(m1k + 2m2k) + 2S0S2m1k

)2

S0S1 (S3
1 + S0S2

1 + 4S0S2
2)mk

after lengthy algebra calculations.

Remark 2.1. One limitation of score statistic is that it cannot be computed if S0 = 0

or S1 = 0. We dealt with this problem by adding 1/(2g) to mij for such situation.

Remark 2.2. Tang et al. (2008) derived a score test TSC for g = 2 as

TSC =
N [S0S1(m11 + 2m21)−m01S

2
1 − 2m11S0S2]√

m1m2S0S1[S2
1(S0 + S1) + 4S0S2

2 ]
,

which is equivalent to (2.4).

3. Monte Carlo simulation studies

We now investigate the performance of proposed statistics and testing procedures

discussed in the previous section. First, we investigate the behavior of the type I

error rates of various procedures for g=2,3,4,5; sample size m1 = · · · = mg = 20,

40 and 60; π1 = · · · = πg = π0 = 0.5(0.1)0.8; and R = 1 + ρ(1 − π0)/π0 where

ρ = 0.4(0.1)0.6. In each configuration, 50,000 samples are generated based on

null hypothesis and empirical type I error rates are computed as the number of

rejections/50000, and the results are presented in Table 2. Following Tang et al.

(2008), a test is said to be liberal if the ratio of its actual type I error rate to the

nominal type I error rate is greater than 1.2 (e.g., > 0.06 for α = 0.05, in bold);
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conservative if the ratio of its actual type I error rate to the nominal type I error

rate is less than 0.8 (e.g., < 0.04); and robust otherwise.
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Table 2. The type I error rates (percent) of various procedures

under H0 : π1 = · · · = πg = π0 at α = 0.05 based on 50,000

replicates

m π0 ρ g = 2 g = 3 g = 4 g = 5

T 2
LR T 2

W T 2
SC T 2

LR T 2
W T 2

SC T 2
LR T 2

W T 2
SC T 2

LR T 2
W T 2

SC

20 0.5 0.4 6.70 6.63 5.39 6.95 8.09 5.06 7.10 9.64 4.99 7.19 10.66 5.05

0.5 6.70 5.76 5.34 7.11 7.66 5.10 7.34 9.48 5.01 7.34 10.81 4.82

0.6 7.11 4.86 5.35 7.27 6.94 4.80 7.72 9.51 4.79 8.19 11.97 4.92

0.6 0.4 6.63 6.51 5.25 6.80 8.18 5.16 7.05 9.42 5.15 6.87 10.44 4.80

0.5 6.64 5.57 5.32 6.82 7.14 4.95 6.96 8.93 4.82 7.38 10.45 4.92

0.6 7.18 4.58 5.37 7.34 6.95 4.91 7.64 9.29 4.89 7.80 11.54 4.85

0.7 0.4 6.46 6.28 4.76 6.79 7.96 5.05 6.85 9.28 4.92 6.99 10.55 4.77

0.5 6.90 5.58 5.11 6.89 7.23 4.90 7.30 9.06 4.77 7.64 10.98 4.91

0.6 7.46 4.43 5.02 7.72 6.94 4.80 7.97 10.36 4.73 8.42 13.80 4.92

0.8 0.4 6.76 6.51 4.94 7.26 8.35 4.85 7.49 10.37 4.81 7.71 12.15 4.75

0.5 7.58 5.45 4.99 7.92 7.89 4.78 8.04 11.50 4.72 8.24 14.92 4.65

0.6 7.81 4.00 4.37 8.31 6.94 4.46 8.15 11.87 4.42 8.28 17.56 4.52

40 0.5 0.4 5.72 5.61 5.07 6.00 6.42 5.16 5.86 7.01 4.97 6.00 7.66 5.03

0.5 5.71 5.11 5.15 5.84 5.89 4.98 5.90 6.80 4.91 6.11 7.55 4.92

0.6 5.76 4.66 5.13 5.84 5.48 4.98 6.12 6.62 4.97 6.20 7.45 5.02

0.6 0.4 5.58 5.48 4.98 5.72 6.08 5.05 5.83 6.90 4.98 5.87 7.48 4.99

0.5 5.74 5.13 5.14 5.82 5.83 5.03 6.04 6.73 5.18 6.16 7.57 5.13

0.6 5.84 4.73 5.19 5.79 5.37 5.00 5.98 6.49 4.94 6.05 7.43 4.97

0.7 0.4 5.62 5.41 5.03 5.84 6.11 5.13 5.58 6.42 4.85 5.71 7.30 4.89

0.5 5.59 4.94 4.96 5.88 5.79 5.21 5.86 6.65 5.05 5.69 7.28 4.89

0.6 5.74 4.56 5.00 5.73 5.60 4.88 6.01 6.76 5.00 6.08 7.59 4.97

0.8 0.4 5.76 5.33 5.30 5.85 6.16 4.99 5.98 7.19 5.10 6.00 8.00 5.04

0.5 5.58 4.63 4.97 5.68 5.78 4.76 5.81 6.87 4.68 6.00 7.79 4.92

0.6 5.85 4.44 4.91 5.91 5.71 4.67 6.20 7.23 4.77 6.43 8.51 4.71

60 0.5 0.4 5.39 5.20 4.94 5.67 6.02 5.06 5.60 6.27 4.95 5.62 6.77 4.91

0.5 5.57 5.10 5.11 5.85 5.83 5.23 5.75 6.28 5.02 5.74 6.59 4.99

0.6 5.58 4.67 5.06 5.60 5.28 5.02 5.84 6.08 5.15 5.51 6.39 4.79

0.6 0.4 5.57 5.46 5.19 5.57 5.77 5.06 5.38 6.09 4.86 5.80 6.75 5.14

0.5 5.36 4.90 4.97 5.42 5.39 5.01 5.55 5.85 4.94 5.57 6.39 4.91

0.6 5.56 4.79 5.21 5.56 5.33 4.98 5.52 5.78 4.93 5.69 6.62 4.95

0.7 0.4 5.46 5.24 5.09 5.51 5.62 5.10 5.60 6.23 5.08 5.44 6.47 4.85

0.5 5.44 4.99 5.10 5.54 5.51 5.08 5.48 6.02 4.97 5.47 6.55 4.85

0.6 5.42 4.70 5.04 5.32 5.14 4.84 5.50 5.82 4.91 5.47 6.57 4.82

0.8 0.4 5.41 5.05 5.07 5.52 5.69 5.01 5.47 6.19 4.94 5.50 6.76 4.97

0.5 5.42 4.79 5.04 5.67 5.58 5.19 5.61 6.14 4.98 5.53 6.91 4.80

0.6 5.36 4.56 4.87 5.76 5.59 5.08 5.78 6.54 4.88 5.81 7.33 4.94

Generally, score tests T 2
SC produce satisfactory type I error controls for any

configuration while LR tests and Wald tests are liberal, especially for small samples

and larger number of groups (g). When g > 2, Wald tests are more liberal than

LR tests and these tests get closer when sample size goes larger.
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Table 3. The power (percent) of various procedures at α = 0.05

based on 50,000 replicates

m R g = 2 g = 3 g = 4

T 2
SC T 2

LR T 2
W T T 2

SC T 2
LR T 2

W T T 2
SC T 2

LR T 2
W T

20 1.0 11.8 12.7 13.5 11.7 12.7 14.5 17.2 13.0 13.1 15.2 19.4 13.2

1.5 10.2 12.4 12.9 10.4 11.0 14.0 16.2 11.1 11.6 15.2 19.2 11.8

2.0 10.4 13.7 12.2 9.4 11.6 16.5 16.4 10.1 12.7 18.3 20.4 10.1

40 1.0 24.6 25.3 26.0 24.8 30.4 31.3 32.8 30.6 34.7 35.8 37.9 34.9

1.5 22.2 23.5 24.0 21.6 26.6 28.4 29.8 25.7 30.6 32.7 34.8 29.3

2.0 23.6 25.7 24.7 19.1 29.9 32.6 32.2 22.0 35.9 39.0 39.5 24.8

100 1.0 38.0 38.5 39.1 38.2 48.2 48.8 49.8 48.3 56.0 56.8 58.1 56.1

1.5 33.5 34.4 34.8 32.4 42.5 43.9 44.9 40.5 49.8 51.2 52.5 47.0

2.0 36.5 38.1 37.4 28.7 47.8 50.1 49.9 35.1 57.4 59.7 59.9 40.1

H1 : π= (0.25, 0.325) (0.25, 0.30, 0,35) (0.25, 0.2875, 0.325)

Note: T is the test statistic in Rosner (1982).

LR test and Wald-type test are extremely liberal for a moderate sample size

(i.e., m = 20), and their actual sizes inflate with the increase of the correlation

coefficient (i.e., ρ). Therefore, score test will be recommended.

Next, we evaluate the power performance of proposed methods. We consider

the alternative hypotheses with H1 : π = (0.25, 0.325), (0.25, 0.30, 0, 35), and (0.25,

0.2875, 0.325) for g=2, 3, and 4, respectively. R is chosen as 1, 1.5, and 2.0 and

sample size m1 = · · · = mg = 20, 40 and 100. Ronser (1982)’s statistic T is also

considered in the simulation studies and the results are presented in Table 3.

Based on the simulation results, LR and Wald tests are generally more powerful

than score tests and Ronser (1982)’s T is generally with less power. However, LR

and Wald tests inflate power because their empirical levels are larger than nominal

level (see Table 2 ). For moderate or large sample size, the powers of proposed

three methods are close. Overall, score test is highly recommended as it has more

power with satisfactory type I error control.

4. Work examples

We reanalyze the data presented by Rosner [4] to illustrate the newly proposed

methods. The outpatient population of 218 persons aged 20-39 with retinitis pig-

mentosa (RP) were classified on the basis of a detailed family history into the

genetic types of autosomal dominant RP (DOM), autosomal recessive RP (AR),

sex-linked RP (SL), and isolate RP (ISO) for a study of differences between these
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Table 4. Distribution of the number of affected eyes for persons

in each genetic type

genetic type

number of affected eyes DOM AR SL ISO

0 15 7 3 67

1 6 5 2 24

2 7 9 14 57

Table 5. Statistic and p-value for comparing VA for different ge-

netic types of RP

method T 2
LR T 2

W T 2
SC T

statistic 5.8862 6.2966 6.8475 11.36

p-value 0.1173 0.0980 0.0769 0.010

Table 6. Wald-type test results comparing VA for different ge-

netic types of RP

Group MLE Standard Comparison group

i π̂i Error DOM AR SL ISO

DOM 0.3930 0.0041 − -0.0868 -0.1698 -0.1001

(p =0.3116) (p =0.0207) (p =0.1363)

AR 0.4798 0.0039 − -0.0830 -0.0132

(p =0.2135 (p =0.8284)

SL 0.5628 0.0022 − 0.0697

(p =0.0748)

ISO 0.4931 0.0011 −
R̂ = 1.6639

four groups on the Snellen visual acuity (VA). An eye was considered affected if VA

was 20/50 or worse, and normal if VA was 20/40 or better. The sample used for

this analysis consists of 216 persons out of the sample of 218 persons each of whom

had complete information for VA on both eyes (Table 4).

An overall significant difference between the proportions of affected eyes in the

four groups is from 0.0769 to 0.1173 based on proposed methods and 0.010 on

Rosner’s statistic T (Table 5).

The maximum likelihood estimates and pairwise comparisons are shown in Ta-

ble 6. It shows a significant difference between DOM and AR (p=0.0207).

Another example was a recent study from a cross-sectional population-based

sample in Iran to assess the prevalence of avoidable blindness (Rajavi et al., 2011).
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Table 7. Prevalence of avoidable blindness of a sample population

in Iran

Age Blindness Sample

Group None Unilateral Bilaterial Prevalence MLE

50-54 yrs 964 23 2 0.014 0.014

55-59 yrs 541 17 8 0.029 0.030

60-64 yrs 469 18 4 0.026 0.027

65-69 yrs 257 16 5 0.047 0.048

70-74 yrs 242 32 3 0.069 0.067

75-79 yrs 127 30 9 0.145 0.134

80+ yrs 104 29 10 0.171 0.149

Nearly 3000 persons were examined and the blindness are assessed for seven age

groups (Table 7). Test statistics T 2
LR = 134.7, T 2

W = 89.1, T 2
SC = 161.1, and

T = 202.0 all show the significant age differences consistently (p-value<0.0001),

and MLE R̂ = 3.35 shows positive correlation between eyes in a person.

5. Concluding remarks

In this article, we investigated three procedures for testing the homogeneity for

correlated data with cluster size two. We derived the maximum likelihood estimate

algorithm by utilizing the root of third order polynomial equations. Fisher scoring

method is usually criticized for converging slowly especially when the number of

parameters is large (e.g. g is large). However, the algorithm derived in this paper

is very efficient because only R is updated by Fisher scoring iterations, and πi, i =

1, . . . , g are the roots of third order polynomials, a closed form solution.

Simulation results show that the proposed approach (score test) has satisfactory

type I error control with very high power regardless of number of groups, sample

sizes and parameter configurations. The LR test and Wald test have inflated type

I error and therefore are not recommended.

Although there are many convenient ways to solve the MLE iteratively or hy-

pothesis tests with today’s computation power (e.g., in R or other software), the

explicit form of test statistic (e.g., score statistic) is still very useful not only for its

simplicity but also for future development of the test. For example, in small sample

situation, an exact test may overcome the inflated type I error rate, however, the
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exact test requires extensive calculations and it is nearly impossible using iterative

version of test statistics.

To overcome inflated type I error control in asymptotic tests, Tang et al. (2006)

and Shan et al. (2013) considered exact tests for g=2. We consider the exact tests

for g > 2 as interesting future work.
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Appendix

5.1. Information matrix. Differentiating ∂l
∂πi

, i = 1, . . . , g and ∂l
∂R with respect

to πi, i = 1, . . . , g and R respectively yields

∂2l

∂π2
i

=
m0i

(
−2R2 π2

i + 4R πi + 2R− 4
)

(R π2
i − 2πi + 1)

2 − 2m2i

π2
i

−
(
2R2 π2

i − 2R πi + 1
)
m1i

π2
i (R πi − 1)

2 ,

∂2l

∂πi∂R
= − m1i

(R πi − 1)
2 − 2 (πi − 1) πim0i

(R πi
2 − 2πi + 1)

2 ,

i = 1, . . . , g

∂2l

∂πi∂πj
= 0, i $= j,

∂2l

∂R2
= − S2

R2
−

g∑

i=1

π2
i m1i

(R πi − 1)
2 −

g∑

i=1

π4
i m0i

(R π2
i − 2πi + 1)

2 .

Then we have

Iii = E

(
− ∂2l

∂π2
i

)
=

2mi

(
2R2 πi

2 −R πi
2 − 2R πi + 1

)

πi (R πi
2 − 2πi + 1)(1−R πi)

,

Ii,g+1 = E

(
− ∂2l

∂πi∂R

)
= − 2 (1−R) πi

2 mi

(R πi
2 − 2πi + 1)(1−R πi)

,

i = 1, . . . , g

Iij = E

(
− ∂2l

∂πi∂πj

)
= 0, i $= j,

Ig+1,g+1 = E

(
− ∂2l

∂R2

)
=

g∑

i=1

πi
2 mi(Rπi − 2πi + 1)

R(R πi
2 − 2πi + 1)(1−R πi)

.

The (g + 1)× (g + 1) information matrix is denoted as I(π1, . . . ,πg;R) = (Iij).

Under null hypothesis H0 : π1 = · · · = πg = π, it is straightforward but tedious

to show that the inverse of information matrix can be expressed as

I−1(π;R) =
π4 R (R− 1)

2

N(2π2 R2 − π2 R− 2πR+ 1)





c1 1 · · · 1 d

1 c2 1 1 d

· · · · · · · · · · · · · · ·
1 1 · · · cg d

d d d d h





where

ci =

(
R π2 − 2π + 1

)
(1− πR)N

2π3 R (R− 1)
2
mi

+ 1, i = 1, . . . , g,

d =
2π2 R2 − π2 R− 2πR+ 1

π3 (R− 1)
,
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and

h =

(
2π2 R2 − π2 R− 2πR+ 1

)2

π6 (R− 1)
2 .
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